Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Applied Statistics ; : 1-13, 2022.
Article in English | Academic Search Complete | ID: covidwho-1662023

ABSTRACT

The new coronavirus disease, called COVID-19, has spread extremely quickly to more than 200 countries since its detection in December 2019 in China. COVID-19 marks the return of a very old and familiar enemy. Throughout human history, disasters such as earthquakes, volcanic eruptions and even wars have not caused more human losses than lethal diseases, which are caused by viruses, bacteria and parasites. The first COVID-19 case was detected in Turkey on 12 March 2020 and researchers have since then attempted to examine periodicity in the number of daily new cases. One of the most curious questions in the pandemic process that affects the whole world is whether there will be a second wave. Such questions can be answered by examining any periodicities in the series of daily cases. Periodic series are frequently seen in many disciplines. An important method based on harmonic regression is the focus of the study. The main aim of this study is to identify the hidden periodic structure of the daily infected cases. Infected case of Turkey is analyzed by using periodogram-based methodology. Our results revealed that there are 4, 5 and 62 days cycles in the daily new cases of Turkey. [ FROM AUTHOR] Copyright of Journal of Applied Statistics is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
Annu Rev Control ; 51: 488-499, 2021.
Article in English | MEDLINE | ID: covidwho-1086764

ABSTRACT

This paper shows how existing methods of time series analysis and modeling can be exploited in novel ways to monitor and forecast the COVID-19 epidemic. In the past, epidemics have been monitored by various statistical and model metrics, such as evaluation of the effective reproduction number, R ( t ) . However, R ( t ) can be difficult and time consuming to compute. This paper suggests two relatively simple data-based metrics that could be used in conjunction with R ( t ) estimation and provide rapid indicators of how the epidemic's dynamic behavior is progressing. The new metrics are the epidemic rate of change (RC) and a related state-dependent response rate parameter (RP), recursive estimates of which are obtained from dynamic harmonic and dynamic linear regression (DHR and DLR) algorithms. Their effectiveness is illustrated by the analysis of COVID-19 data in the UK and Italy. The paper also shows how similar methodology, combined with the refined instrumental variable method for estimating hybrid Box-Jenkins models of linear dynamic systems (RIVC), can be used to relate the daily death numbers in the Italian and UK epidemics and then provide 15-day-ahead forecasts of the UK daily death numbers. The same approach can be used to model and forecast the UK epidemic based on the daily number of COVID-19 patients in UK hospitals. Finally, the paper speculates on how the state-dependent parameter (SDP) modeling procedures may provide data-based insight into a nonlinear differential equation model for epidemics such as COVID-19.

3.
Int J Environ Res Public Health ; 17(16)2020 08 13.
Article in English | MEDLINE | ID: covidwho-717734

ABSTRACT

Time series analysis in epidemiological studies is typically conducted on aggregated counts, although data tend to be collected at finer temporal resolutions. The decision to aggregate data is rarely discussed in epidemiological literature although it has been shown to impact model results. We present a critical thinking process for making decisions about data aggregation in time series analysis of seasonal infections. We systematically build a harmonic regression model to characterize peak timing and amplitude of three respiratory and enteric infections that have different seasonal patterns and incidence. We show that irregularities introduced when aggregating data must be controlled during modeling to prevent erroneous results. Aggregation irregularities had a minimal impact on the estimates of trend, amplitude, and peak timing for daily and weekly data regardless of the disease. However, estimates of peak timing of the more common infections changed by as much as 2.5 months when controlling for monthly data irregularities. Building a systematic model that controls for data irregularities is essential to accurately characterize temporal patterns of infections. With the urgent need to characterize temporal patterns of novel infections, such as COVID-19, this tutorial is timely and highly valuable for experts in many disciplines.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Data Aggregation , Pneumonia, Viral/epidemiology , Seasons , COVID-19 , Cohort Studies , Coronavirus Infections/virology , Humans , Incidence , Models, Theoretical , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Time and Motion Studies
SELECTION OF CITATIONS
SEARCH DETAIL